Truncated and Multiple Differential Cryptanalysis of Reduced Round Midori128
نویسندگان
چکیده
Midori is a family of SPN-based lightweight block ciphers designed to optimize the hardware energy consumption per bit during the encryption and decryption operations. At ASIACRYPT 2015, two variants of the cipher, namely Midori128 and Midori64, which support a 128-bit secret key and a 64/128-bit block, respectively, were proposed. Recently, a meet-in-the-middle attack and an invariant subspace attack were presented against Midori64 but both attacks cannot be applied to Midori128. In this paper, we present truncated and multiple differential cryptanalysis of round reduced Midori128. Our analysis utilizes the special structure of the S-boxes and binary linear transformation layer in order to minimize the number of active S-boxes. In particular, we consider differentials that contain only single bit differences in the input and output of the active S-boxes. To keep this single bit per S-box patterns after the MixColumn operation, we restrict the bit differences of the output of the active S-boxes, which lie in the same column after the shuffle operation, to be in the same position. Using these restrictions, we were able to find 10-round differential which holds with probability 2−118. By adding two rounds above and one round below this differential, we obtain a 13 round truncated differential and use it to perform a key recovery attack on the 13-round reduced Midori128. The time and data complexities of the 13-round attack are 2 encryptions and 2 chosen plaintext, respectively. We also present a multiple differential attack on the 13-round Midori128, with time and data complexities of 2 encryptions and 2 chosen plaintext, respectively.
منابع مشابه
Impossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)
Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...
متن کاملCryptanalysis of Reduced-Round Midori64 Block Cipher
Midori is a hardware-oriented lightweight block cipher designed by Banik et al. in ASIACRYPT 2015. It has two versions according to the state sizes, i.e. Midori64 and Midori128. In this paper, we explore the security of Midori64 against truncated differential and related-key differential attacks. By studying the compact representation of Midori64, we get the branching distribution properties of...
متن کاملImproved Multiple Impossible Differential Cryptanalysis of Midori128
Midori128 is a lightweight block cipher proposed at ASIACRYPT 2015 to achieve low energy consumption per bit. Currently, the best published impossible differential attack on Midori128 covers 10 rounds without the pre-whitening key. By exploiting the special structure of the S-boxes and the binary linear transformation layer in Midori128, we present impossible differential distinguishers that co...
متن کاملImpossible Differential Cryptanalysis on Deoxys-BC-256
Deoxys is a final-round candidate of the CAESAR competition. Deoxys is built upon an internal tweakable block cipher Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-secret input called a tweak. This paper presents the first impossible differential cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal tweakable block cipher. First, we find a 4.5-round...
متن کاملA new method for accelerating impossible differential cryptanalysis and its application on LBlock
Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016